Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Environ Sci Pollut Res Int ; 30(12): 33206-33228, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2289596

ABSTRACT

This paper presents the numerical results of particle propagation in open space, taking into account the temperature of the human body and the surface of the ground. And also, the settling of particles or droplets under the action of gravitational force and transport in the open air is taken into account, taking into account the temperature during the process of breathing and sneezing or coughing. The temperature of the body and the surface of the ground, different rates of particle emission from the mouth, such as breathing and coughing or sneezing, are numerically investigated. The effect of temperature, cross-inlet wind, and the velocity of particle ejection from a person's mouth on social distancing is being investigated using a numerical calculation. The variable temperature of the human body forms a thermal plume, which affects the increase in the trajectory of the particle propagation, taking into account the lateral air flow. The thermal plume affects the particles in the breathing zone and spreads the particles over long distances in the direction of the airflow. The result of this work shows that in open space, taking into account the temperature of the body and the surface of the ground, a 2-m social distance may be insufficient for the process of sneezing and social distance must be observed depending on the breathing mode.


Subject(s)
Human Body , Wind , Humans , Temperature , Particle Size , Physical Distancing , Respiratory Aerosols and Droplets , Sneezing
2.
Building and Environment ; 230, 2023.
Article in English | Scopus | ID: covidwho-2232441

ABSTRACT

With the increasing requirements for fresh air supply in buildings after the COVID-19 pandemic and the rising energy demand from buildings, there has been an increased emphasis on passive cooling techniques such as natural ventilation. While natural ventilation devices such as windcatchers can be a sustainable and low-cost solution to remove indoor pollutants and improve indoor air quality, it is not as reliable as mechanical systems. Integration with low-energy cooling, heating or heat recovery technologies is necessary for operation in unfavourable outdoor conditions. In this research, a novel dual-channel windcatcher design consisting of a rotary wind scoop and a chimney was proposed to provide a fresh air supply irrespective of the wind direction. The dual-channel design allows for passive cooling, dehumidification and heat recovery technology integration to enhance its thermal performance. In this design, the positions of the supply and return duct are "fixed” or would not change under changing wind directions. An open wind tunnel and test room were employed to experimentally evaluate the ventilation performance of the proposed windcatcher prototype. A Computational Fluid Dynamic (CFD) model was developed and validated to further evaluate the system's ventilation performance. The results confirmed that the system could supply sufficient fresh air and exhaust stale air under changing wind directions. The ventilation rate of the rotary scoop windcatcher was higher than that of a conventional 8-sided multidirectional windcatcher of the same size. © 2023 The Author(s)

3.
Int J Refrig ; 145: 78-89, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2076200

ABSTRACT

The outbreak of the COVID-19 has affected all aspects of people's lives around the world. As air transmits the viruses, air-conditioning systems in buildings, surrounded environments, and public transport have a significant role in restricting the transmission of airborne pathogens. In this paper, a computational fluid dynamic (CFD) model is deployed to simulate the dispersion of the COVID-19 virus due to the coughing of a patient in a conference hall, and the effect of displacement of supply and return registers of the air conditioning system is investigated. A validated Eulerian-Lagrangian CFD model is used to simulate the airflow in the conference hall. The particles created by coughing are droplets of the patient's saliva that contain the virus. Three cases with different positions of supply and return registers have been compared. The simulation results show that case1 has the best performance; since after 80 s in case 1 that the inlet registers are in the longitudinal wall, the whole particles are removed from space. However, in other cases, some particles are still in space.

4.
Sci Total Environ ; 773: 145537, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1061972

ABSTRACT

Virus-laden droplets dispersion may induce transmissions of respiratory infectious diseases. Existing research mainly focuses on indoor droplet dispersion, but the mechanism of its dispersion and exposure in outdoor environment is unclear. By conducting CFD simulations, this paper investigates the evaporation and transport of solid-liquid droplets in an open outdoor environment. Droplet initial sizes (dp = 10 µm, 50 µm, 100 µm), background relative humidity (RH = 35%, 95%), background wind speed (Uref = 3 m/s, 0.2 m/s) and social distances between two people (D = 0.5 m, 1 m, 1.5 m, 3 m, 5 m) are investigated. Results show that thermal body plume is destroyed when the background wind speed is 3 m/s (Froude number Fr ~ 10). The inhalation fraction (IF) of susceptible person decreases exponentially when the social distance (D) increases from 0.5 m to 5 m. The exponential decay rate of inhalation fraction (b) ranges between 0.93 and 1.06 (IF=IF0e-b(D-0.5)) determined by the droplet initial diameter and relative humidity. Under weak background wind (Uref = 0.2 m/s, Fr ~ 0.01), the upward thermal body plume significantly influences droplet dispersion, which is similar with that in indoor space. Droplets in the initial sizes of 10 µm and 50 µm disperse upwards while most of 100 µm droplets fall down to the ground due to larger gravity force. Interestingly, the deposition fraction on susceptible person is ten times higher at Uref = 3 m/s than that at Uref = 0.2 m/s. Thus, a high outdoor wind speed does not necessarily lead to a smaller exposure risk if the susceptible person locating at the downwind region of the infected person, and people in outdoors are suggested to not only keep distance of greater than 1.5 m from each other but also stand with considerable angles from the prevailing wind direction.


Subject(s)
Communicable Diseases , Exhalation , Humans
5.
J Hazard Mater ; 397: 122609, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-45880

ABSTRACT

Droplet dispersion carrying viruses/bacteria in enclosed/crowded buses may induce transmissions of respiratory infectious diseases, but the influencing mechanisms have been rarely investigated. By conducting high-resolution CFD simulations, this paper investigates the evaporation and transport of solid-liquid mixed droplets (initial diameter 10 µm and 50 µm, solid to liquid ratio is 1:9) exhaled in a coach bus with 14 thermal manikins. Five air-conditioning supply directions and ambient relative humidity (RH = 35 % and 95 %) are considered. Results show that ventilation effectiveness, RH and initial droplet size significantly influence droplet transmissions in coach bus. 50 µm droplets tend to evaporate completely within 1.8 s and 7 s as RH = 35 % and 95 % respectively, while 0.2 s or less for 10 µm droplets. Thus 10 µm droplets diffuse farther with wider range than 50 µm droplets which tend to deposit more on surfaces. Droplet dispersion pattern differs due to various interactions of gravity, ventilation flows and the upward thermal body plume. The fractions of droplets suspended in air, deposited on wall surfaces are quantified. This study implies high RH, backward supply direction and passengers sitting at nonadjacent seats can effectively reduce infection risk of droplet transmission in buses. Besides taking masks, regular cleaning is also recommended since 85 %-100 % of droplets deposit on object surfaces.


Subject(s)
Exhalation , Ventilation , Motor Vehicles
SELECTION OF CITATIONS
SEARCH DETAIL